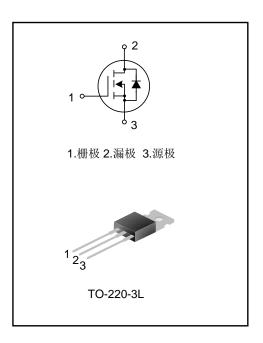


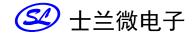
110A、70V N沟道增强型场效应管


描述

SVG075R5NT N沟道增强型功率 MOS 场效应晶体管采用士兰的 LVMOS 工艺技术制造。先进的工艺及元胞结构使得该产品具有较低的导通电阻、优越的开关性能及很高的雪崩击穿耐量。

该产品可广泛应用于不间断电源及逆变器系统的电源管理领域。

特点


- 110A, 70V, $R_{DS(on)}$ (40 =4.6m Ω @ V_{GS} =10V
- ◆ 低栅极电荷量
- ◆ 低反向传输电容
- ◆ 开关速度快
- ◆ 提升了 dv/dt 能力

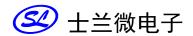
产品规格分类

产品名称	封装形式	打印名称	环保等级	包装方式
SVG075R5NT	TO-220-3L	075R5NT	无铅	料管

杭州士兰微电子股份有限公司 http://www.silan.com.cn

极限参数(除非特殊说明, T_c=25°C)

参数		符号	参数值	单位	
漏源电压		V _{DS}	70	V	
栅源电压		V_{GS}	±20	V	
漏极电流	T _C =25°C	ı	120	А	
	T _C =100°C	I _D	100		
漏极脉冲电流		I _{DM}	440	Α	
耗散功率 (T _C =25℃)		P _D	121	W	
-大于 25℃ 每摄氏度减少		FD	0.97	W/°C	
单脉冲雪崩能量(注 1)		E _{AS}	390	mJ	
工作结温范围		TJ	-55∼+150	°C	
贮存温度范围		T _{stg}	-55∼+150	°C	

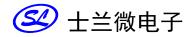

热阻特性

参数	符号	参数值	单位
芯片对管壳热阻	$R_{ heta JC}$	1.03	°C/W
芯片对环境的热阻	$R_{\theta JA}$	62.0	°C/W

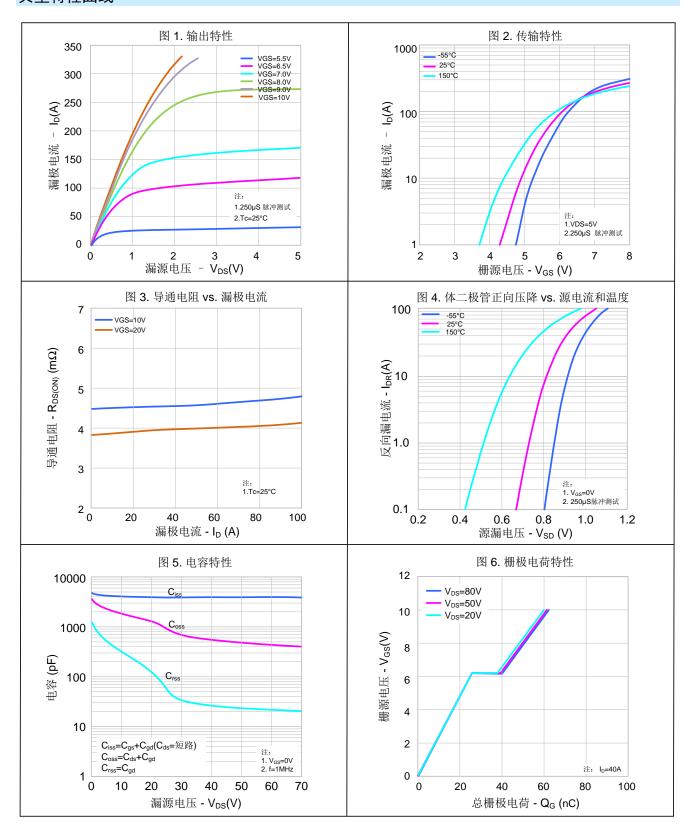
关键特性参数(除非特殊说明, T_c=25°C)

参数	符号	测试条件	最小值	典型值	最大值	单位
漏源击穿电压	BV _{DSS}	V _{GS} =0V, I _D =250μA	70			V
漏源漏电流	I _{DSS}	V _{DS} =70V, V _{GS} =0V		1	1.0	μΑ
栅源漏电流	I _{GSS}	V _{GS} =±20V, V _{DS} =0V			±100	nA
栅极开启电压	$V_{GS(th)}$	$V_{GS} = V_{DS}$, $I_D = 250 \mu A$	2.0		4.0	V
导通电阻	R _{DS(on)}	V _{GS} =10V, I _D =40A		4.6	5.5	mΩ
栅极电阻	R _G	f=1MHz		2.3	1	Ω
输入电容	C _{iss}			3926		pF
输出电容	Coss	f=1MHz,V _{GS} =0V,V _{DS} =35V		600		
反向传输电容	C _{rss}			28		
开启延迟时间	t _{d(on)}	V 25V V 40V B 2.70		23		
开启上升时间	t _r	$V_{DD}=35V, V_{GS}=10V, R_{G}=2.7\Omega,$		36		no
关断延迟时间	t _{d(off)}	I _D =40A (注 2,3)		44		ns
关断下降时间	t _f	(4± 2,3)		15		
栅极电荷量	Qg	V _{DD} =56V, V _{GS} =10V, I _D =40A		62		
栅极-源极电荷量	Q _{gs}			25		nC
栅极-漏极电荷量	Q_{gd}	(注 2,3)		14		

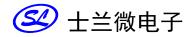
版本号: 1.1 共8页 第2页

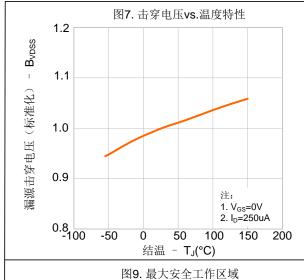

源-漏二极管特性参数

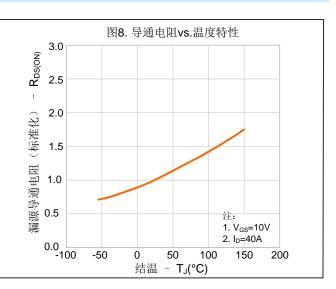
参数	符号	测试条件	最小值	典型值	最大值	单位
源极电流	Is	MOS 管中源极、漏极构成的反偏			110	۸
源极脉冲电流	I _{SM}	P-N 结			440	А
源-漏二极管压降	V_{SD}	I _S =40A,V _{GS} =0V			1.4	V
反向恢复时间	Trr	I _S =40A,V _{GS} =0V,		49		ns
反向恢复电荷	Q_{rr}	dIF/dt=100A/µs(注 2)		0.08		μC

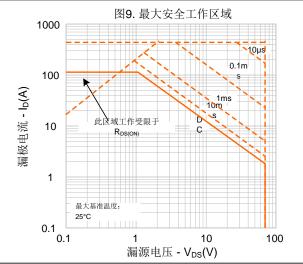

注:

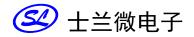
- 1. L=0.5mH,I_{AS}=39A,V_{DD}=56V,R_G=25Ω,开始温度 T_J=25°C;
- 2. 脉冲测试:脉冲宽度≤300μs,占空比≤2%;
- 3. 基本上不受工作温度的影响。


版本号: 1.1 共8页 第3页

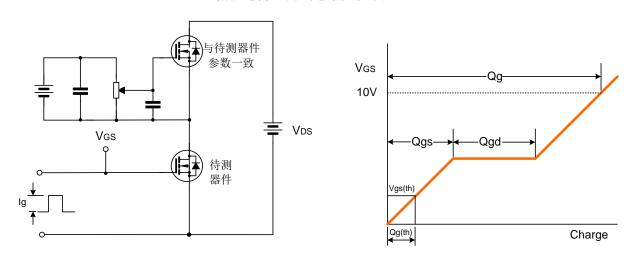

典型特性曲线

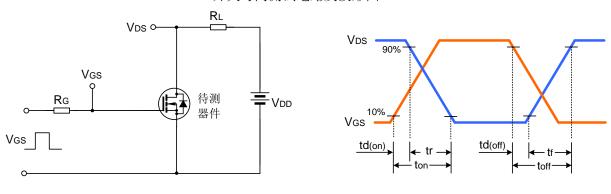



版本号: 1.1

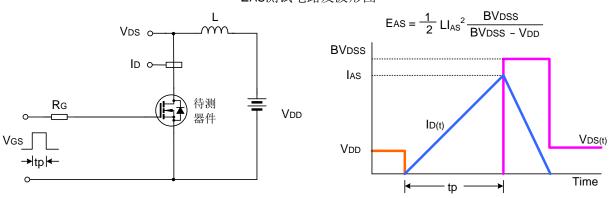


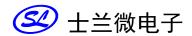
典型特性曲线(续)



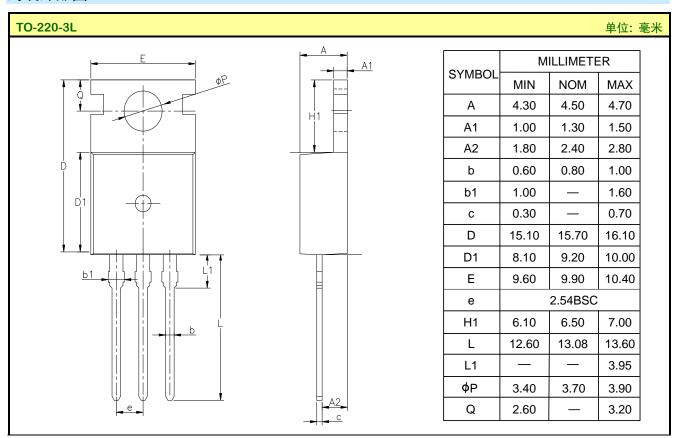


典型测试电路

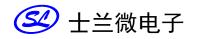

栅极电荷量测试电路及波形图



开关时间测试电路及波形图



EAS测试电路及波形图


封装外形图

重要注意事项:

- ◆ 士兰保留说明书的更改权,恕不另行通知。客户在下单前应获取我司最新版本资料,并验证相关信息是否最新 和完整。
- 我司产品属于消费类和/或民用类电子产品。
- ◆ 在应用我司产品时请不要超过产品的最大额定值,否则会影响整机的可靠性。任何半导体产品特定条件下都有一定的失效或发生故障的可能,买方有责任在使用我司产品进行系统设计、试样和整机制造时遵守安全标准并 采取安全措施,以避免潜在失败风险可能造成人身伤害或财产损失情况的发生。
- 购买产品时请认清我司商标,如有疑问请与本公司联系。
- ◆ 转售、应用、出口时请遵守中国、美国、英国、欧盟等国家、地区和国际出口管制法律法规。
- ◆ 产品提升永无止境,我公司将竭诚为客户提供更优秀的产品!
- ◆ 我司网站 http: //www.silan.com.cn

http://www.silan.com.cn

SVG075R5NT 说明书

产品名称: SVG075R5NT 文档类型: 说明书

版 权: 杭州士兰微电子股份有限公司 公司主页: http://www.silan.com.cn

版 本: 1.1

修改记录:

1. 更新漏极电流参数值

2. 更新说明书模板

版 本: 1.0

修改记录:

1. 正式版本发布

杭州士兰微电子股份有限公司

http://www.silan.com.cn

公司 版本号: 1.1 版本号: 1.1 共 8 页 第 8 页